Epitaxial growth of silicon nanowires using an aluminium catalyst.
نویسندگان
چکیده
Silicon nanowires have been identified as important components for future electronic and sensor nanodevices. So far gold has dominated as the catalyst for growing Si nanowires via the vapour-liquid-solid (VLS) mechanism. Unfortunately, gold traps electrons and holes in Si and poses a serious contamination problem for Si complementary metal oxide semiconductor (CMOS) processing. Although there are some reports on the use of non-gold catalysts for Si nanowire growth, either the growth requires high temperatures and/or the catalysts are not compatible with CMOS requirements. From a technological standpoint, a much more attractive catalyst material would be aluminium, as it is a standard metal in Si process lines. Here we report for the first time the epitaxial growth of Al-catalysed Si nanowires and suggest that growth proceeds via a vapour-solid-solid (VSS) rather than a VLS mechanism. It is also found that the tapering of the nanowires can be strongly reduced by lowering the growth temperature.
منابع مشابه
Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process
The growth of epitaxial Si nanowires by a metal-catalyst-free process has been investigated as an alternative to the more common metal-catalyzed vapor-liquid-solid process. The well-aligned Si nanowires are successfully grown on a (111)-oriented Si substrate without any metal catalysts by a thermal treatment using silicon sulfide as a Si source at approximately 1200 °C. The needle-shaped Si nan...
متن کاملCatalyst preparation for CMOS-compatible silicon nanowire synthesis.
Metallic contamination was key to the discovery of semiconductor nanowires, but today it stands in the way of their adoption by the semiconductor industry. This is because many of the metallic catalysts required for nanowire growth are not compatible with standard CMOS (complementary metal oxide semiconductor) fabrication processes. Nanowire synthesis with those metals that are CMOS compatible,...
متن کاملPlanar GaAs nanowires on GaAs (100) substrates: self-aligned, nearly twin-defect free, and transfer-printable.
We report the controlled growth of planar GaAs semiconductor nanowires on (100) GaAs substrates using atmospheric pressure metalorganic chemical vapor deposition with Au as catalyst. These nanowires with uniform diameters are self-aligned in <110> direction in the plane of (100). The dependence of planar nanowire morphology and growth rate as a function of growth temperature provides insights i...
متن کاملIn-situ Quasi-Instantaneous e-beam Driven Catalyst-Free Formation Of Crystalline Aluminum Borate Nanowires
The catalyst-assisted nucleation and growth mechanisms for many kinds of nanowires and nanotubes are pretty well understood. At times, though, 1D nanostructures form without a catalyst and the argued growth modes have inconsistencies. One such example is the catalyst-free growth of aluminium borate nanowires. Here we develop an in-situ catalyst-free room temperature growth route for aluminium n...
متن کاملMultispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon
Vertical III-V nanowires are capable of resonant absorption at specificwavelengths by tuning the nanowire diameter, thereby exceeding the absorption of equivalent thinfilms. These propertiesmay be exploited to fabricatemultispectral infrared (IR) photodetectors, directly integratedwith Si, without the need for spectral filters or vertical stacking of heterostructures as required in thinfilm dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 1 3 شماره
صفحات -
تاریخ انتشار 2006